ANDERSON SECONDARY SCHOOL **Preliminary Examination 2017 Secondary Four Express and Five Normal Academic**

ADDITIONAL MATHEMATICS PAPER 1 ANSWERS

1 (i)
$$3y = 15x - 2(x-3)^{\frac{3}{2}} - 44$$
 or $y = 5x - \frac{2}{3}(x-3)^{\frac{3}{2}} - \frac{44}{3}$

(ii)
$$3y = 52 - x$$

3 (i)
$$p = 4$$
, $q = -1$

(ii)
$$A = (0,3), B = \left(\frac{3}{2},0\right), C = \left(\frac{5}{2},0\right)$$

4 (i)
$$52-30\sqrt{3}$$
 (ii) $30\sqrt{3}-51$

(i)
$$(2\frac{4}{5}, \frac{3}{5})$$

6 (ii)
$$y = 51.6^{\circ}$$
 (1dp)

7 (i)
$$a = 5, b = 0.5, c = 4$$

(i)
$$a = 5$$
, $b = 0.5$, $c = 4$
(ii) $P = (-8.14, 0)$, $Q = (1.85, 0)$ and $R = (4.32, 0)$

8 (ii)
$$(1,0)$$
 and $(-\frac{1}{3},0)$ (iv) $-4 < m < 0$

9 (ii)
$$\int x \sin 6x \, dx = \frac{x}{6} + \frac{\sin 6x}{36} - \frac{x \cos^2 3x}{3} + c$$

10 (ii)
$$\left(\frac{4}{9}, \frac{1}{3}\right)$$

11 (i)
$$2 + \frac{3}{2x-1} + \frac{2}{x+5} - \frac{1}{(x+5)^2}$$

12 (ii)
$$\frac{\sqrt{1600 + (60 - x)^2}}{2} + \frac{x}{4}$$
 seconds

(iii)
$$\frac{dT}{dx} = \frac{x - 60}{2\sqrt{1600 + (60 - x)^2}} + \frac{1}{4}$$

(iv)
$$x = 36.9$$

ANDERSON SECONDARY SCHOOL Preliminary Examination 2017 Secondary Four Express and Five Normal Academic

ADDITIONAL MATHEMATICS PAPER 1 MARKING SCHEME

- 1 A curve is such that $\frac{dy}{dx} = 5 \sqrt{x-3}$ and A(7, 15) is a point on the curve.
 - (i) Find the equation of the curve. [2]
 - (ii) Find the equation of the normal to the curve at A.

Equation of normal:
$$y-15 = -\frac{1}{3}(x-7)$$
 [A1]
or $3y = 52 - x$

[2]

The equation of a curve is given by $y = x^2 + 2ax + 2a - 3$, where a is a constant. Show that, for all values of a, the curve intersects the x-axis at two distinct points. [4]

Marking Scheme

At the points where the curve intersects the *x*-axis,

$$x^{2} + 2ax + 2a - 3 = 0$$
Discriminant = $(2a)^{2} - 4(1)(2a - 3)$ [M1]
= $4a^{2} - 8a + 12$
= $4(a^{2} - 2a + 3)$
= $4[(a - 1)^{2} + 2]$
= $4(a - 1)^{2} + 8$ [M1]

Since $(a-1)^2 \ge 0$ for all real a,

 $4(a-1)^2 \ge 0$

[M1]

 $4(a-1)^2 + 8 > 0$ for all a.

Since discriminant > 0 for all a,

the eqn $x^2 + 2ax + 2a - 3 = 0$ has 2 distinct roots for all values of a. Thus the curve intersects the x axis at two distinct points

- The diagram shows the graph of y = |p-2x|+q, where p and q are integers. A is the point where the graph intersects the y-axis, and B and C are the points where it intersects the x-axis. Point D(2, -1) is the vertex of the graph.
 - (i) Find the value of p and of q. [2]
 - (ii) Hence find the coordinates of A, B and C. [4]

When y = 0, |4-2x|-1=0 |4-2x|=1 |4-2x|=1or |4-2x|=-1 [M1] |x|=0 [M1]

Therefore $B = \left(\frac{3}{2}, 0\right)$ and $C = \left(\frac{5}{2}, 0\right)$ [A1]

- 4 (i) Express $\left(\frac{1-\sqrt{3}}{2+\sqrt{3}}\right)^2$ in the form $a+b\sqrt{3}$ where a and b are integers. [3]
 - (ii) The diagram shows a triangle ABC where angle $ABC = 90^{\circ}$, $AB = (\sqrt{3} 1)$ cm and $AC = (2 + \sqrt{3})$ cm. Using your answer to (i), find the exact value of $\cos^2(A\hat{C}B)$ without using a calculator. [3]

Marking Scheme

(i)
$$\left(\frac{1-\sqrt{3}}{2+\sqrt{3}}\right)^2 = \left(\frac{1-\sqrt{3}}{2+\sqrt{3}} \times \frac{2-\sqrt{3}}{2-\sqrt{3}}\right)^2$$

= $\left(5-3\sqrt{3}\right)^2$

 $= 52 - 30\sqrt{3}$

[M1] rationalize denominator

[M1] correct multiplication

[A1] correct evaluation of square

(ii) $\cos^2(\hat{ACB}) = 1 - \sin^2(\hat{ACB})$

 $1 \sqrt{3-1}$ $2+\sqrt{3}$

[M1] Use of trigo identity

 $(52-30\sqrt{3})$

[M1] Use of answer in (i) - allow ecf

5 It is given that point A (8, 11) lies on the line l with equation y = 2x - 5, and P is the point (1, 2).

If B is the point on l such that PBA is a right-angled triangle, find

(i) the coordinates of
$$B$$
, [5]

(ii) the area of triangle
$$PBA$$
. [2]

Marking Scheme

Case 1: right-angle at B

Since PB is perpendicular to line l, gradient of PB =

Since B is on Line I, its coordinates satisfy the equation

Let coordinates of B be (x, 2x -

Gradient of P.

$$2x - 7 = \frac{1}{2}x + \frac{1}{2}$$

[M1] solving for one of the coordinates correctly

Thus the coordinates of B = (3, 1)

[Alternative solution]

Since \overrightarrow{PB} is perpendicular to Line l, gradient of $PB = -\frac{1}{2}$

Equation of $PB: y = -\frac{1}{2}x + c$

Sub in (1, 2), equation of PB:

$$y = -\frac{1}{2}x + \frac{5}{2} - - (1)$$

 $y = -\frac{1}{2}x + \frac{5}{2} - -- (1)$ [M1] finding eqn of PB correctly

$$y = 2x - 5$$
 --- (2)

Sub (1) into (2),

$$-\frac{1}{2}x + \frac{5}{2} = 2x - 5$$
 [M1] or equivalent

x = 3

[M1] solving for one of the coordinates correctly

$$y = 1$$

Thus the coordinates of B = (3, 1) [A1]

(ii) Considering area of trapeziums formed by the 3 points and the x-axis,

Area of
$$PBA = \frac{1}{2}(2+11)(7) - \frac{1}{2}(2+1)(2) - \frac{1}{2}(1+11)(5)$$
 [M1]
= 12.5 units² [A1]

(Also accept Shoelace Mtd or Area of triangle method)

Case 2: right-angle at P

(ii)

Thus the coordinates of $B = (2\frac{4}{5}, \frac{3}{5})$ [A1]

(ii) Area of
$$PBA = \frac{1}{2} \left(\sqrt{130} \left(\frac{\sqrt{130}}{5} \right) \right)$$
 [M1]
= 13 units² [A1]

- 6 (i) Prove that $(\sin 2y + 2)(\sin y \cos y) = 2\cos^3 y (\tan^3 y 1)$. [4]
 - (ii) Hence find the acute angle y, in degrees, such that $(\sin 2y + 2)(\sin y \cos y) = 2\cos^3 y$. [2]

[A1]

Marking Scheme

- (i) $(\sin 2y + 2)(\sin y \cos y)$ $= (2\sin y \cos y + 2)(\sin y - \cos y)$ [M1] $= 2(\sin^2 y \cos y - \sin y \cos^2 y + \sin y - \cos y)$ $= 2[\sin y(1 - \cos^2 y) - \cos y(1 - \sin^2 y)]$ [M1] $= 2[\sin y(\sin^2 y) - \cos y(\cos^2 y)]$ [M1]
 - $= 2\left[\sin^3 y \cos^3 y\right]$ $= 2\cos^3 y \left(\frac{\sin^3 y}{\cos^3 y} \frac{\cos^3 y}{\cos^3 y}\right)$ $= 2\cos^3 y \left(\tan^3 y 1\right) \quad \text{(Proven)}$

Alternative solution:

RHS = $2\cos^3 y (\tan^3 y - 1)$ = $2\cos^3 y (\frac{\sin^3 y}{\cos^3 y} - 1)$ [M1] = $2\sin^3 y - 2\cos^3 y$ = $2[(1 - \cos^2 y)\sin y - (1 - \sin^2 y)\cos y]$ [M1] = $2(\sin y - \sin y\cos^2 y - \cos y + \sin^2 y\cos y)$ = $2[\sin y\cos y(\sin y - \cos y) + \sin y - \cos y]$ = $2[(\sin y\cos y + 1)(\sin y - \cos y)]$ [M1] = $(2\sin y\cos y + 2)(\sin y - \cos y)$ [M1] = $(2\sin y\cos y + 2)(\sin y - \cos y)$ [Proven]

- $2\cos^{3} y (\tan^{3} y 1) = 2\cos^{3} y$ Since y is acute, $\cos y > 0$ $\Rightarrow \tan^{3} y 1 = 1$ $\Rightarrow \tan^{3} y = 2$ [M1]
 - ⇒ $y = 51.6^{\circ} \text{ (1dp)}$

 $(\sin y + 2)(\sin y + \cos y) = 2\cos^3 y$

(ii)

7 The figure shows part of the graph of $y = a \sin(bx) + c$. Points P, Q and R on the graph lie on the x axis.

(ii) Hence find the coordinates of P, Q and R.

[4]

Marking Scheme

(i)

$$a = 5$$

b = 0.5

c = -4

[B1] [B1]

[B1]

(ii) $y = 5 \sin \frac{x}{2}$ When y = 0,

 $5 \sin \frac{x}{2} - 4 = 0$

 $\sin\frac{x}{2} = \frac{4}{5}$

 $\frac{x}{2} = -\pi - 0.9272, \quad 0.9272, \quad \pi - 0.9272, \dots$ [M1]

x = -8.14, 1.85, 4.43, ...

Therefore P = (-8.14, 0), Q = (1.85, 0) and R = (4.32, 0) [A3]

8 A curve has the equation $y = 4 - (3x - 1)^2$.

- (i) Explain why the highest point on the curve has coordinates $\left(\frac{1}{3}, 4\right)$. [1]
- (ii) Find the coordinates of the points at which the curve intersects the x-axis. [2]
- (iii) Sketch the graph of $y = |4 (3x 1)^2|$. [2]
- (iv) The equation $|4 (3x 1)^2| = mx + 4$ has 4 distinct solutions. Using your graph, determine the range of values of m. [2]

Marking Scheme

(i) Since $(3x-1)^2 \ge 0$, $-(3x-1)^2 \le 0$ $\Rightarrow 4-(3x-1)^2 \le 4$.

Thus the maximum value of y is 4, and it occurs when $x = \frac{1}{3}$.

[B1] (or other equiv logical arguments)

Therefore the highest point on the curve has coordinates $\left(\frac{1}{2}, 4\right)$

(ii) When y = 0,

 $4 - (3x - 1)^2 = 0$

3x-1=2 or 3x-1=-2

x = 1 or $x = -\frac{1}{3}$

The curve intersects the x-axis at the points (1,0) and $\left(-\frac{1}{3},0\right)$. **[A1]**

[M1]

(iii)

[C1] Shape of Graph

[C1] Passes through (0, 3),

 $\left(-\frac{1}{3}, 0\right)$, (1, 0) and $\left(\frac{1}{3}, 4\right)$.

(iv) Consider intersection of curve in (iii) with the line y = mx + 4. When m = 0, there're 3 points of intersection. For 4 intersection points, m < 0.

Gradient of line that passes through (0, 4) and (1, 0) = -4.

Thus range of values of m is -4 < m < 0

- 9 (i) Show that $\frac{d}{dx}(x\cos^2 3x) = \cos^2 3x 3x\sin 6x$. [3]
 - (ii) Hence integrate $x \sin 6x$ with respect to x. [4]

Marking Scheme

(i)
$$\frac{d}{dx}(x\cos^2 3x) = \cos^2 3x + x(2\cos 3x)(-\sin 3x)(3)$$
 [M1] product rule + [M1] chain rule

$$= \cos^2 3x - 3x(2\cos 3x\sin 3x)$$

$$= \cos^2 3x - 3x\sin 6x$$
 [A1] double angle formula

10 (i) Sketch the parabola $y^2 = 2x$.

- [2]
- (ii) The curve $y^2 = 2x$ intersects the straight line y = 3x 1 at the points A and B. Find the coordinates of the midpoint of AB. [6]

Marking Scheme

(i)

[C1] Correct shape of curve

[C1] passes through origin

(ii) y = 3x - 1 - (1)

From (1), $x = \frac{y+1}{3}$

Sub into (2):

$$y^2 = 2\left(\frac{y+1}{3}\right)$$

[M1]

$$3y^2 - 2y - 2 = 0$$

[M1]

[M4]

When $x = \frac{1+\sqrt{7}}{3}$, $x = \frac{1+\sqrt{7}}{3} + 1 = \frac{4+\sqrt{7}}{9}$.

When $y = \frac{1 - \sqrt{7}}{3}$, $x = \frac{1 - \sqrt{7}}{3} + 1 = \frac{4 - \sqrt{7}}{9}$.

Coordinates of A and B are $\left(\frac{4+\sqrt{7}}{9}, \frac{1+\sqrt{7}}{3}\right)$ and $\left(\frac{4-\sqrt{7}}{9}, \frac{1-\sqrt{7}}{3}\right)$. **[M1]**

Midpoint of
$$AB = \left(\frac{\frac{4+\sqrt{7}}{9} + \frac{4-\sqrt{7}}{9}}{2}, \frac{\frac{1+\sqrt{7}}{3} + \frac{1-\sqrt{7}}{3}}{2}\right)$$
 [M1]

 $=\left(\frac{4}{9},\frac{1}{3}\right)$

[A1] (Only exact answer accepted)

11 (i) Express
$$\frac{4x^3 + 45x^2 + 126x + 16}{(2x-1)(x+5)^2}$$
 in partial fractions. [5]

Hence show that (ii)

$$\int_{1}^{2} \frac{4x^3 + 45x^2 + 126x + 16}{(2x - 1)(x + 5)^2} dx = \frac{83}{42} + \frac{\ln 27}{2} + \ln\left(\frac{49}{36}\right).$$
 [4]

Marking Scheme

By long division,

$$\frac{4x^{3} + 45x^{2} + 126x + 16}{(2x - 1)(x + 5)^{2}}$$

$$= 2 + \frac{7x^{2} + 46x + 66}{(2x - 1)(x + 5)^{2}}$$
[B1] quotient of 2 + [M1] proper fraction
$$= 2 + \frac{A}{2x - 1} + \frac{B}{x + 5} + \frac{C}{(x + 5)^{2}}$$
[M1] (correct general form of partial frac)
$$= 2 + \frac{3}{2x - 1} + \frac{2}{x + 5} - \frac{1}{(x + 5)^{2}}$$
[A2] (-1 if 1-2 mistakes in A, B, C values)

[Alternative Solution]

By inspection / observation,

$$\frac{4x^3 + 45x^2 + 126x + 16}{(2x - 1)(x + 5)^2} = 2 + \frac{A}{2x - 1} + \frac{C}{(x + 5)^2}$$

[B1] quotient of 2+[M1] correct general form of partial frac

Multiplying throughout by $(2x-1)(x+5)^2$:

$$4x^{3} + 45x^{2} + 126x + 16$$

$$= 2(2x - 1)(x + 5)^{2} + A(x + 5)^{2} + B(2x - 1)(x + 5) + C(2x - 1)$$
 [M1]

By substituting suitable values of
$$x$$
, $A = 3$, $B = 2$ and $C = -1$.
Therefore
$$\frac{4x^3 + 45x^2 + 126x + 16}{(2x-1)(x+5)^2} = 2 + \frac{3}{2x-1} + \frac{2}{x+5} - \frac{1}{(x+5)^2}$$

[A2] (-1 if 1-2 mistakes in A, B, C values)

(ii)
$$\int_{1}^{2} \frac{4x^{3} + 45x^{2} + 126x + 16}{(2x - 1)(x + 5)^{2}} dx$$

$$= \int_{1}^{2} \left(2 + \frac{3}{2x - 1} + \frac{2}{x + 5} - \frac{1}{(x + 5)^{2}}\right) dx$$

$$= \left[2x + \frac{3}{2}\ln(2x - 1) + 2\ln(x + 5) + \frac{1}{x + 5}\right]_{1}^{2} \text{ [M1] for ln terms + [M1] for } \frac{1}{x + 5}$$

$$= \left[4 + \frac{3}{2}\ln(3) + 2\ln(7) + \frac{1}{7}\right] - \left[2 + \frac{3}{2}\ln(1) + 2\ln(6) + \frac{1}{6}\right] \text{ [M1] subn of limits}$$

$$= \frac{83}{42} + \frac{3}{2}\ln(3) + \ln 49 - \ln 36$$

$$= \frac{83}{42} + \frac{\ln 27}{2} + \ln\left(\frac{49}{36}\right) \text{ (Shown)} \text{ [A1] for correct appen of aws of log}$$

12 A lifeguard at a beach resort is stationed at point G along the coastline, as shown in the diagram below. When he detects a swimmer who needs help at a point S, he would run along the coastline over a distance of x m to a point H, and then swim in a straight line, HS, towards the swimmer. The lifeguard runs at a speed of 4 m/s and swims at a speed of 2 m/s.

A swimmer in distress is detected at a position that is 40 m away from the coastline, and the foot of perpendicular from the swimmer to the coastline is at a distance of 60 m away from the lifeguard.

Show that the time taken by the lifeguard to swim from H to S(i)

$$\frac{\sqrt{1600 + (60 - x)^2}}{2}$$
 seconds.

Find, in terms of x, the total time T taken by the lifeguard to reach the (ii) swimmer. [1]

[2] (iii)

Find the value of x such that the lifeguard would be able to reach the swimmer (iv) in the shortest possible time [4]

Marking Scheme

Using Pythagora's Thm, $HS = \sqrt{40^2 + (60 - x)^2}$

$$= \sqrt{1600 + (60 - x)^2}$$
 m [M1]

Time taken by the lifeguard to swim from
$$H$$
 to S

$$= \frac{\text{Distance Travelled}}{\text{Speed}} = \frac{\sqrt{1600 + (60 - x)^2}}{2} \text{ s. } \text{ [A1]}$$

Time taken to travel from G to $H = \frac{\text{Distance Travelled}}{\text{Speed}} = \frac{x}{4} \text{ seconds}$ (ii)

Total time,
$$T = \frac{\sqrt{1600 + (60 - x)^2}}{2} + \frac{x}{4}$$
 seconds **[B1]**

[2]

(iii)
$$\frac{dT}{dx} = \frac{2(60-x)(-1)}{4\sqrt{1600 + (60-x)^2}} + \frac{1}{4}$$
$$\frac{dT}{dx} = \frac{x-60}{2\sqrt{1600 + (60-x)^2}} + \frac{1}{4}$$
 [B2]

(iv) When *T* is stationary,
$$\frac{dT}{dx} = 0$$
.

$$\frac{x - 60}{2\sqrt{1600 + (60 - x)^2}} + \frac{1}{4} = 0$$
 [M1]

$$\frac{x - 60}{2\sqrt{1600 + (60 - x)^2}} = -\frac{1}{4}$$

$$-2x + 120 = \sqrt{1600 + (60 - x)^2}$$

$$(2x - 120)^2 = 1600 + (60 - x)^2$$

$$3x^2 - 360x + 9200 = 0$$

$$x = \frac{360 \pm \sqrt{360^2 - 4(3)(9200)}}{6}$$

$$x = \frac{360 \pm \sqrt{19200}}{6}$$

x = 36.9 or 83.1 (reject since x cannot be larger than 60.)

[M1] c cannot be larger than 60.) [M1]

First derivative test: x 36.9 36.9 36.9Negative

0
Positive

Thus x=36.9 gives the min time taken to reach the swimmer. **[A1]**

End of Marking Scheme

1 (i)
$$p = -\frac{2}{3}$$
 or 2

- (ii) 8
- 2 (i) Proof

(ii)
$$x = \frac{\pi}{6}, \frac{5\pi}{6}, \pi, \frac{7\pi}{6} \text{ or } \frac{11\pi}{6}$$

- 3 (i) $\alpha\beta = 2$
 - (ii) $\alpha + \beta = -4$
 - (iii) $\alpha \beta = -\sqrt{8}$ $(x+4)(x+2\sqrt{2}) = 0$
- 4 (i) Use corresponding \angle s, $PD \lor RC$ AND \angle s in alternate segment.
 - (ii) Use the result of (i)
 - (iii) Use ∠s in the same segment, alternate ∠s, PD // BC AND ∠s in alternate segment.

- (iii) $-\frac{e^3}{28}$ units/s
- 6 (i) (2x+1)(x+2)(x-2)
 - (ii) $(2x+1)(x^2+1)=0$ Since $x^2+1>0$, 2x+1=0.

 \therefore The equation has only one solution i.e. $x = -\frac{1}{2}$.

(iii) $k < 8\frac{1}{6}$

- 7 (i) x-coordinates of A and B are 2 and 1 respectively.
 - (ii) $\frac{1}{2}$ units²
 - (iii) The curve $x = 3y^2 8y + 6$ is a **reflection (or mirror image)** of the curve $y = 3x^2 8x + 6$ in the line y = x. \therefore the area bounded by the curve $x = 3y^2 8y + 6$ and the line y = x is also $\frac{1}{2}$ units².
- 8 (i) $-8\sqrt{3}$ cm/s
 - (ii) $t = \frac{\pi}{2},$
 - (iii) 18.3 cm
- 9 (i) $y = -\frac{1}{5}x + 3$
 - (ii) Equation of AG is $y = -\frac{3}{2}x \frac{7}{2}$ Coordinates of G = (-5, 4)
 - (iii) $x^2 + y^2 + 10x 8y + 28 = 0$
 - (iv) Coordinates of H = (-1, -2)
 - (v) Equation of circle C_2 is $(x+1)^2 + (y+2)^2 = 13$
- 10 (a) (b) Show that $\sqrt{3-e^x+1}-ke^x \neq 0$ or $\sqrt{3-e^x}+1 \neq ke^x$
 - (ii) ln 3 or ln 2
 - (b) (i) $a = 4, b = \ln 2$
 - (ii) $x = 2^{t}$
- 11 (i) $\lg V = (\lg a)t + \lg V_0$ $t \qquad 1 \qquad 2 \qquad 3 \qquad 4$ $\lg V \qquad 4.91 \qquad 4.86 \qquad 4.82 \qquad 4.77$

- (ii) $a = 0.900 \, (3sf), V_0 = 90100 (3sf)$. Mr Lee paid \$90100 for the car.
- (iii) \$53200

ADDITIONAL MATHEMATICS

Paper 2 Marking Scheme

1 (i)
$$(1-2x)^2(1+px)^7 = (1-4x+4x^2)(1+7px+21p^2x^2+.....)$$
 [M1]
Coefficient of $x^2 = 32$
 $21p^2 - 28p + 4 = 32$ [M1]
 $21p^2 - 28p - 28 = 0$
 $3p^2 - 4p - 4 = 0$ [M1]
 $(3p+2)(p-2) = 0$
 $p = -\frac{2}{3}$ or 2 [A1]

(ii) Since coefficient of
$$x^2$$
 in $(1-2x)^2(1+px)$ is 32,
Coefficient of x^2 in $(1-x)^2\left(1+\frac{px}{2}\right)^7 = \left(\frac{1}{2}\right)^2 \times 32$

2 (i)
$$\sin 3x \equiv \sin(2x + x)$$
,
 $\equiv \sin 2x \cos x + \cos 2x \sin x$
 $\equiv 2 \sin x \cos^2 x + (1 - 2\sin^2 x) \sin x$
 $\equiv (2 \sin x)(1 - \sin^2 x) + \sin x - 2\sin x$

$$= (2\sin x)(1-\sin^2 x) + \sin x - 2\sin^3 x$$

[M1]

(ii)
$$\sin 3x = 2\sin x$$
, $0 < x < 2\pi$
 $3\sin x - 4\sin^3 x = 2\sin x$
 $4\sin^3 x - \sin x \neq 0$ [M1]
 $\sin x = 4\sin^2 x - 1 = 0$
 $\sin x = 0$ or $\pm \frac{1}{2}$ [M1]

When
$$\sin x = 0$$
, $x = \pi$. [A1]

When
$$\sin x = \frac{1}{2}$$
, $x = \frac{\pi}{6}$ or $\frac{5\pi}{6}$. [A1]

When
$$\sin x = -\frac{1}{2}$$
, $x = \frac{7\pi}{6}$ or $\frac{11\pi}{6}$. [A1]

$$x = \frac{\pi}{6}, \frac{5\pi}{6}, \pi, \frac{7\pi}{6} \text{ or } \frac{11\pi}{6}$$
 (accept $x = 0.524, 2.62, 3.14, 3.67 \text{ or } 5.76$)

$$3 x^2 = 12x - 4$$
$$x^2 - 12x + 4 = 0$$

(i)
$$\alpha^2 \beta^2 = 4$$
 [M1]
 $\alpha \beta = \pm 2$
Since $\alpha < 0 \& \beta < 0, \alpha \beta > 0$.
 $\therefore \alpha \beta = \frac{2}{2}$ [A1]

(ii)
$$\alpha^2 + \beta^2 = 6$$
 [M1]
 $(\alpha + \beta)^2 - 2\alpha\beta = 12$
 $(\alpha + \beta)^2 = 12 + 2(2)$
 $= 16$ [M1]

$$\alpha + \beta = \pm 4$$

Since $\alpha < 0$, $\beta < 0$, $\alpha + \beta < 0$,
 $\therefore \underline{\alpha + \beta = -4}$ [A1]

- 4 (i) $\angle ADP = \angle ACB$ (corresponding \angle s, PD // BC) [M1] $= \angle ABP$ (\angle s in alternate segment) [M1]
 - (ii) Since ADP = ABP from (i), using angles in the segment, A, D, B and P lie on a circle. [M1]
 - (iii) $\angle BAP = \angle BDP$ (\angle s in the same segment) [M1] $= \angle DBC$ (alternate \angle s, PD // BC) $\angle BAP = \angle BCD$ (\angle s in alternate segment) [M1] Since $\angle DBC = \angle BCD$, [A1]

$$5 y = \frac{1+2x}{e^{3x}}$$

(i)
$$\frac{dy}{dx} = \frac{e^{3x}(2) - (1 + 2x)(3e^{3x})}{e^{6x}}$$
 [M1]
$$= \frac{2 - 3 - 6x}{e^{3x}}$$
$$= -\frac{6x + 1}{e^{3x}}$$
 [A1]
$$(accept \frac{-6x - 1}{e^{3x}})$$

(ii) For y to be decreasing, $\frac{dy}{dx} < 0$.

$$-\frac{6x+1}{e^{3x}} < 0$$
 [M1]
Since $e^{3x} > 0$, [M1]

$$-(6x+1) < 0.$$

$$x > -\frac{1}{6}$$
[A1]

(iii)
$$\frac{dy}{dt} = \frac{dy}{dx} \times \frac{dx}{dt}$$
$$= -\frac{6x+1}{e^{3x}} \times \frac{dx}{dt}$$

When
$$x = 1$$
, $\frac{dy}{dt} = \frac{1}{4}$.

$$\frac{1}{4} = -\frac{7}{e^3} \times \frac{dx}{dt}$$
 [M1]

$$\frac{dx}{dt} = \frac{e^3}{28}$$
 [A1], (must have negative)

$$\therefore$$
 x is decreasing at a rate of $\frac{e^3}{28}$ units/s when $x = 1$.

(Accept rate of change is
$$-\frac{e^3}{28}$$
 units/s)

6 (i)
$$f(x) = 2x^{3} + x^{2} - 8x - 4$$
$$= x^{2}(2x+1) - 4(2x+1) \text{ [M1]}$$
$$= (2x+1)(x^{2}-4) \text{ [M1]}$$
$$= (2x+1)(x+2)(x-2) \text{ [A1]}$$

Alternatively,

$$f(x) = 2x^3 + x^2 - 8x - 4$$

$$f(2) = 2(2)^3 + 2^2 - 8(2) - 4$$

 $\therefore x-2$ is a factor of f(x). [M1]

Let
$$2x^3 + x^2 - 8x - 4 = (x - 2)(2x^2 + hx + 2)$$

Coefficient of x = -8.

$$2 - 2h = -8$$

$$h = 5$$

$$\therefore 2x^{3} + x^{2} - 8x - 4 = (x - 2)(2x^{2} + 5x + 2) \quad [M1]$$

$$= (x - 2)(x + 2)(2x + 1)$$

$$\therefore f(x) = (x - 2)(x + 2)(2x + 1) \quad [A1]$$

:
$$f(x) = (x-2)(x+2)(2x+1)$$
 [A1]

(ii)
$$f(x) + 10x + 5 = 0$$

$$x^{2}(2x+1)-4(2x+1)+5(2x+1)=0$$
 [M1]

$$(2x+1)(x^2+1)=0$$

Since
$$x^2 + 1 > 0$$
, $2x + 1 = 0$. [M1]

 \therefore The equation has only one solution and the value is x = -

(iii)
$$y = f(x) + kx$$

$$\neq 2x^3 + x^2 - 8x - 4 + k$$

$$\frac{dy}{dx} = 6x^2 + 2x + 8 + k$$

At the stationary point,
$$\frac{dy}{dx} = 0$$

$$6x^2 + 2x - 8 + k = 0$$
 [M1]

Since the curve has two stationary points, the equation has real and distinct roots. Discriminant > 0.

$$2^2 - 4(6)(-8 + k) > 0$$
 [M1]

$$k - 8 < \frac{1}{6}$$

$$k < 8\frac{1}{6}$$
 [A1]

8

x-coordinates of A and B are 2 and 1 respectively. [A1]

(ii) Area of the region bounded by the curve $y = 3x^2 - 8x + 6$ and the line y = x is $\int_1^2 x - (3x^2 - 8x + 6) dx$ [M1]

$$= \left[-x^3 + \frac{9x^2}{2} - 6x \right]_1^2 \quad [M1]$$

$$= -8 + 18 - 12 - \left(-1 + \frac{9}{2} - 6 \right)$$

$$= \frac{1}{2} \text{ units}^2 \quad [A1]$$

(iii) The curve $x = 3y^2 - 8y + 6$ is a **reflection** (or purver image) of the curve $y = 3x^2 - 8x + 6$ in the line y = x. .: the area bounded by the curve $x = 3y^2 - 8y + 6$ and the line y = x is also $\frac{1}{2}$ units² [12], (1m for the description and 1m for correct answer)

(i)
$$x = 5\cos 2t - 6\sin t$$

$$\frac{dx}{dt} = -10\sin 2t - 6\cos t \quad [M1]$$

$$\frac{dx}{dt} = -10\sin \frac{\pi}{3} - 6\cos \frac{\pi}{6} \quad [M1]$$

$$= -5\sqrt{3} - 3\sqrt{3}$$

 $=-8\sqrt{3}$ [A1] (Do not give the A1 here if they give 13.9)

When $t = \frac{\pi}{6}$, velocity of *P* is $-8\sqrt{3}$ cm/s

(ii) When *P* is instantaneously at rest,
$$\frac{dx}{dt} = 0$$
.
 $-10\sin 2t - 6\cos t = 0$
 $5(2\sin t \cos t) + 3\cos t = 0$ [M1]
 $\cos t(10\sin t + 3) = 0$
 $\cos t = 0 \text{ or } \sin t = -\frac{3}{10}$ [M1]
Since $0 < t < \pi$, $\sin t \ne -\frac{3}{10}$. [M1]
When $\cos t = 0$, $t = \frac{\pi}{2}$ [A1]

(iii) When
$$t = 0$$
, $x = 5$ [M1]

When $t = \frac{\pi}{2}$,

 $x = 5\cos \pi - 6\sin \frac{\pi}{2}$
 $= -11$ [M1]

When $t = 2$, $x = 5\cos 4 - 6\sin 2$
 $= -8.7240$ [M1]

Distance travelled in the first 2 seconds) = $5 - (-11) - 8.1240 - (-11) \text{ cm}$
 $= 18.276 \text{ cm}$
 $= 18.276 \text{ cm}$

Alternatively, they can use integration. Distance travelled in the first 2 seconds.

$$= -\int_{0}^{\frac{\pi}{2}} -10\sin 2t - 6\cos t \, dt + \int_{\frac{\pi}{2}}^{2} -10\sin 2t - 6\cos t \, dt$$

$$= -\left[5\cos 2t - 6\sin t\right]_{0}^{\frac{\pi}{2}} + \left[5\cos 2t - 6\sin t\right]_{\frac{\pi}{2}}^{2}$$

$$= -\left(5\cos\pi - 6\sin\frac{\pi}{2} + 5\cos\theta - 6\sin\theta\right) + \left(5\cos4 - 6\sin2 - 5\cos\pi + 6\sin\frac{\pi}{2}\right)$$

$$= 27 + 5\cos4 - 6\sin2$$

= 18.276 cm

9 (i)
$$A(-3,1)$$
, $B(-2,6)$.

Gradient of
$$AB = \frac{6-1}{-2+3}$$

$$= 5$$
[M1]

Midpoint of
$$AB = \left(\frac{-3-2}{2}, \frac{1+6}{2}\right)$$
$$= \left(-\frac{5}{2}, \frac{7}{2}\right)$$
 [M1]

Equation of **perpendicular bisector** of *AB* is $\frac{y - \frac{7}{2}}{x + \frac{5}{2}} = -\frac{1}{5}$

i.e.
$$y = -\frac{1}{5}x + 3$$
 [A1]

(ii) Gradient of the line
$$2x-3y+9=0$$
 is $\frac{2}{3}$.

Gradient of
$$AG$$
 is $-\frac{3}{2}$. [M1]

Equation of AG is
$$\frac{y-1}{x+3} = -\frac{3}{2}$$

i.e.
$$y = -\frac{3}{2}x - \frac{7}{2}$$
 [M1]

Since G is the intersection of the perpendicular bisector of AB and the line segment AG,

$$-\frac{1}{5}x + 3 = \frac{3}{2}x - \frac{7}{2}$$

$$\frac{13}{10}x = \frac{13}{2}$$

When
$$x = -5$$
, $y = 4$.

Coordinates of
$$6 = 5,4$$
 [A1]

(iii)
$$AG = \sqrt{(-5 + 3)^2 + (4 - 1)^2}$$

$$=\sqrt{13}$$
 units [M1]

Equation of the circle C_1 is $(x+5)^2 + (y-4)^2 = 13$ [A1] i.e. $\underline{x^2 + y^2 + 10x - 8y + 28 = 0}$

i.e.
$$\underline{x^2 + y^2 + 10x - 8y + 28 = 0}$$

Let coordinates of H be (a,b). (iv)

$$\left(\frac{-5+a}{2},\frac{4+b}{2}\right) = \left(-3,1\right) \quad [\mathbf{M1}]$$

$$a = -1, b = -2$$

Coordinates of
$$H = (-1,-2)$$
.

(v) Equation of circle
$$C_2$$
 is $(x+1)^2 + (y+2)^2 = 13$ [A1]
i.e. $x^2 + y^2 + 2x + 4y - 8 = 0$

10 (a) (i)
$$\sqrt{3-e^x} + 1 - ke^x = 0$$

 $\sqrt{3-e^x} + 1 = ke^x$
If $k < 0$, $ke^x < 0$. [M1]
But $\sqrt{3-e^x} \ge 0$, $\sqrt{3-e^x} + 1 > 0$ [M1]
 $\therefore \sqrt{3-e^x} + 1 \ne ke^x$, i.e. $\sqrt{3-e^x} + 1 - ke^x \ne 0$ [M1]
 $\therefore \sqrt{3-e^x} + 1 - ke^x = 0$ has no solution.

(ii)
$$3 - \sqrt{3 - e^x} = e^x$$
$$3 - e^x = \sqrt{3 - e^x}$$
$$9 - 6e^x + (e^x)^2 = 3 - e^x$$
$$(e^x)^2 - 5e^x + 6 = 0 \quad [M1]$$
$$(e^x - 3)(e^x - 2) = 0$$
$$e^x = 3 \text{ or } 2 \quad [M1]$$
$$x = \ln 3 \text{ or } \ln 2 \quad [A1]$$

(b) (i)
$$\ln \left(\frac{ax}{1-x} \right) = bt$$

When t = 0, $x = \frac{1}{5}$.

$$\frac{a}{5} \times \frac{5}{4} = 1$$
When $t = 1$, $x = \frac{1}{3}$.

$$\frac{a}{5} \times \frac{5}{4} = 1$$
When $t = 1$, $x = \frac{1}{3}$.

$$b = \ln 2$$
 [A1]

$$\therefore \underline{a=4,b=\ln 2}$$

(ii)
$$\ln\left(\frac{4x}{1-x}\right) = t \ln 2$$
$$\left(\frac{4x}{1-x}\right) = 2^{t} \qquad [M1]$$
$$4x = 2^{t}(1-x)$$
$$x(4+2^{t}) = 2^{t}$$
$$x = \frac{2^{t}}{4+2^{t}} \qquad [A1]$$

11 (i)
$$V = V_0 a^t$$

$$\lg V = \lg V_0 + \lg a^t$$

$$\lg V = (\lg a)t + \lg V_0$$
 [M1]

t	1	2	3	4
$\lg V$	4.91	4.86	4.82	4.77

Table [M1]

- Graph of $\lg V$ against t.
- All points correctly plotted [M1]
- Line cutting the vertical axis [M1]

(iii) Value of car on 1st January 2018 = $$90157(0.900)^5$ = \$53236= \$53200 (3sf) [A1]

End of Paper