- 1 (a) The roots of the quadratic equation $2x^2 + x + 3 = 0$ are α and β . Find the quadratic equation whose roots are $\alpha^2 1$ and $\beta^2 1$. [5]
 - **(b)** Show that the equation $x^2 (3-k)x + k = 4$ has real roots for all real values of k.

(b)	Discriminant = $b^2 - 4ac$	M1
	$= [-(3-k)]^2 - 4(k-4)$	1011
	$=k^2-6k+9-4k+16$	
	$=k^2-10k+25$	
	$=(k-5)^2$	M1
	Since $(k-5^2) \ge 0$, $x^2 - (3-k)x + k = 4$ has real roots for all real values of k .	A1

- 2 (a) Solve the equation $3\sqrt{2^x} + 12 = 3(2^{x-1})$. [4]
 - **(b)** Solve the equation $\log_3(8-x) + \log_3 x = 2\log_9 15$. [4]
 - (c) The mass, m grams, of a radioactive substance detected in a piece of sione is given by the formula $m = \beta e^{-kt}$, where β and k are constants, t is the time interval in months and $\beta \neq 0$.
 - (i) If the mass of the substance is reduced to half its original value four months after it was first being detected, find the value of k [2]

 (ii) Find the initial mass of the substance if its mass after one month is 0.25 a
 - (ii) Find the initial mass of the substance if its mass after one month is 0.25 g. [2]

(a) $3\sqrt{2^x} + 12 = 3(2^x)^{\frac{1}{2}}$ $2(2^x)^{\frac{1}{2}} + 12 = 3(2^x)^{\frac{1}{2}}$ Let $u = 2^x$ 1 = u - 8 $4u = u^2 - 16u + 64$ $u^2 - 20u + 64 = 0$ (u - 4)(u - 16) = 0 u = 4 or u = 16 $2^x = 2^2 2^x = 2^4$ x = 2 (NA) x = 4M1
A1

(b)	$\log_3(8-x) + \log_3 x = 2\log_9 15$ $\log_3(8x - x^2) = \frac{2\log_3 15}{\log_3 9}$ $\log_3(8x - x^2) = \frac{2\log_3 15}{2\log_3 3}$	M2 – apply rules of logarithms
	$8x - x^{2} = 15$ $x^{2} - 8x + 15 = 0$ $(x - 3)(x - 5) = 0$ $x = 3 or x = 5$ Initial mass of substance is when $t = 0$.	A1
(c) (i)	$m = \beta e^{-k(0)} = \beta$ $0.5\beta = \beta e^{-k(4)}$ $0.5 = e^{-k(4)}$ $\ln 0.5 = -4k$	M1 A1
(c) (ii)	$k = \frac{\ln 2}{4} = 0.173$ $0.25 = \beta e^{-k}$ $0.25 = \beta e^{-\frac{\ln 2}{4}}$ $\ln 0.25 = \ln \beta + \ln e^{-\ln 2^{\frac{1}{4}}}$ $\ln \beta = \ln 0.25 + \ln 2^{\frac{1}{4}}$	M1
	$\beta = 0.25 \times 2^{\frac{1}{4}}$ $= 0.29730$ ≈ 0.297	A1

- 3 (a) The first three terms in the binomial expansion $(1+kx)^n$ are $1+5x+\frac{45}{4}x^2+...$ Find the value of n and of k.
 - **(b)** Find the term independent of x in the expansion of $x\left(2x \frac{1}{2x^2}\right)^8$. [3]

(1+kz)	$(x)^{n} = 1 + \binom{n}{1}(kx)^{1} + \binom{n}{2}(kx)^{2} + \dots$ $= 1 + nkx + \frac{n(n-1)(n-2) \times \dots}{2(n-2)(n-3) \times \dots} k^{2}x^{2} + \dots$ $= 1 + nkx + \frac{n(n-1)}{2}k^{2}x^{2} + \dots$	M1
nk	paring the coefficients of x and x^2 , = 5 $= \frac{5}{k} - \dots (1)$	
45	$ \frac{k}{1 - \frac{n(n-1)k^2}{2}} $ $ = 2n(n-1)k^2 - \dots (2) $	M1
Sul 45	bst. (1) into (2), = $50-10k$ = $\frac{1}{2}$ and $n = 10$	M1 A1
	ider general term for $2x$ $\frac{1}{2x^2}$ $\frac{8}{2x^2}$ $\frac{1}{2x^2}$	
18-3	$= \begin{pmatrix} 8 \\ r \end{pmatrix} \begin{pmatrix} 2x^2 \\ -\frac{1}{2} \end{pmatrix} \begin{pmatrix} x^8 - 3r \\ -\frac{1}{2} \end{pmatrix}$	M1
8 3	3r = -1 $9 = 3r$ $1 = 3$	M1
Term	independent of $x = {8 \choose 3} (2)^{8-3} \left(-\frac{1}{2}\right)^3$ = -224	A1

The diagram shows a circle with centre C(8, 3). PQ is a diameter of the circle and the equation of the tangent to the circle at P is given by 3x + 4y = 11. Find

(i) the coordinates of P, [3]

(ii) the equation of the circle, and [2]

(iii) the coordinates of Q.

[2]

		2
(i)	Gradient of $PC = \frac{4}{3}$	
	Since P lies on $3x + 4y = 11 \Rightarrow y = -\frac{3}{4}x + \frac{11}{4}$	M1
	let the coordinates of $P(p, \frac{3}{4}p + \frac{11}{4})$.	
	$\frac{-\frac{3}{4}p + \frac{11}{4} - 3}{p - 8} \neq \frac{4}{3}$	
	$-\frac{9}{4}p + \frac{33}{4} - 9 = 4p - 32$	M1
	$p = 31\frac{1}{4}$ $p = 31\frac{1}{4}$ $p = 3\frac{1}{4}$ $p = 3\frac{1}{4}$	
	= -1 Coordinates of $P(5, -1)$	A1
(ii)	Radius of circle = $\sqrt{(8-5)^2 + (3+1)^2}$ = 5 units	B1
	Equation of circle: $(x-8)^2 + (y-3)^2 = 25$	B1
(iii)	Let the coordinates of Q be (a, b) .	
		M1

$\frac{-1+b}{2} = 3$ $b = 7$ $\therefore Q(11,7)$ A1
--

Two variables, x and y, are related by an equation $y = k(x-1)^h$, where k and h are constants. The table below shows their experimental values obtained.

					100	
\boldsymbol{x}	2.26	3.0	4.0	4.5	5.2	7.0
У	7.94	20.0	45.8	61.3	88.2	180

- (i) Express the equation $y = k(x-1)^h$ in a form of Y = mX + c. [1]
- (ii) Draw a straight line graph and use it to estimate the value of k and of k. [5]

$\lg k = 0.700$	
$ \lg k = 0.700 k = 10^{0.700} k = 5.01 \pm 1.4 $	B1
$h = 2 \pm 0.2$	B1

6 (a) An aeroplane is flying horizontally at an altitude of 2000 m and at a speed of 100 m/s. It passes directly above an observer on the ground. The diagram below shows the original position, A, of the aeroplane when it is directly above the observer and its position, B, t seconds later.

- (i) Show that the distance, D m, between the aeroplane and the observer at time t is given by $D = 100\sqrt{400 + t^2}$. [2]
- (ii) Hence, find how fast the distance, D, from the observer to the aeroplane is increasing 90 seconds later. [3]
- (b) A solid cube has volume, $V \text{ cm}^3$ and surface area, $S \text{ cm}^2$,

(i) Show that $S = 6\sqrt[3]{V^2}$. [2]

(ii) The cube is heated and its volume is increasing at the rate of 0.008 cm³/s, when its length is 3 cm. What is the rate of change of the surface area? [4]

(i)	$D^2 = 2000^2 + (100t)^2$	
	$D^2 = 4000000 + 10000t^2$	
	Since $D > 0$,	M1
	$\therefore D = \sqrt{10000(400 + t^2)}$	
	$D = 100\sqrt{400 + t^2} \text{(shown)}$	A1
		3.61
(a) (ii)	$\frac{dD}{dt} = 100 \cdot \frac{1}{2} \cdot \frac{1(2t)}{\sqrt{400 + t^2}}$	M1
	$=\frac{100t}{\sqrt{400+t^2}}$	A1
	When $t = 90s$, $\frac{dD}{dt} = \frac{100 \times 90}{\sqrt{400 + (90)^2}}$	
	$\approx 97.6 \mathrm{m/s}$	A1
(b)	Let the length of the cube be $x \text{ cm}$.	
	$V = x^3 (1)$ $S = 6x^2 (2)$	§
(i)	From (1), $x = V^{1/3}$, substitute into (2)	
		M1
	$S = 6(V^{1/3})^2$	1011
	$=6V^{\frac{2}{3}}$	
		A1
(0)	$=6^{\frac{3}{4}}V^{2}$	Al
(a) (ii)	$S = 6\sqrt[3]{V^2}$	
	dS = 6	M1
	$dV = \sqrt{3}$	
	=(3)3	A1
	$= 27 \text{ cm}^3$	
	$\frac{dS}{dt} = \frac{dS}{dV} \times \frac{dV}{dt}$	M1
		1111
	$=4(27)^{-\frac{1}{3}}\times0.008$	
	= 0.010667	A1
	$= 0.0107 \text{ cm}^2/\text{s}$	

A cyclist is travelling along a straight road and passes a street light, L, with velocity v m/s, where $v = 5 + 3t - 2t^2$, and t, the time after passing the street light, is measured in seconds.

Find

(i) the maximum velocity of the cyclist within the first 3 seconds,

(i)	$v = 5 + 3t - 2t^2$	
	$a = \frac{dv}{dt} = 3 - 4t$	M1
	At maximum velocity, $a = 0$,
	3 - 4t = 0	AD
	$t=\frac{3}{4}$	
	4	\mathbf{a}
	Maximum Velocity = $5 + 3\left(\frac{3}{4}\right) + 2\left(\frac{3}{4}\right)^2$	
	$=\frac{49}{8}$	
	$=6\frac{1}{8}$ m/s	
(ii)	At instantaneous rest, $v = 0$	
	(5-2t)(t+1) = 0	M1
	5 - 2t = 0 $t + 1 = 0$	
	$t = \frac{3}{2} \qquad t = -1 \text{(NA)}$	
	The cyclist is at instantaneous rest at $t = \frac{5}{2}$ s.	
	2	A1
(iii)	At $t = 0$, initial velocity = 5 m/s	
	So speed is $ v = 5$	
	$\left 5 + 3t - 2t^2 \right = 5$	

	$5 + 3t - 2t^2 = 5$ $3t - 2t^2 = 0$	M1 – solving the quadratic equation
	t(3-2t) = 0 3-2t = 0 or $t = 0$	M1 colving
	$t = \frac{3}{2}$	M1 – solving quadratic equation
	$5 + 3t - 2t^2 = -5$ $10 + 3t - 2t^2 = 0$	A1 – correct values
	$t = \frac{-3 \pm \sqrt{3^2 - 4(-2)(10)}}{2(-2)}$	
	=-1.6085 (NA) or 3.1085	A1
	The cyclist is at initial speed at $t = \frac{3}{2}$ s and $t = 3.11$ s.	9
(iv)	$s = \int 5 + 3t - 2t^2 dt$	21
	$=5t + \frac{3}{2}t^2 - \frac{2}{3}t^3 + c$	V11
	When $t = 0$, $s = 0$, so $t = 0$ $s = 5t + \frac{3}{2}t^2 - \frac{2}{3}t^3$ $t = 3$ $t = 2.5$ $s = 11.458$	
	$s = 5t + \frac{t^2 - \frac{1}{3}t}{2}$ $t = 2, s = \frac{32}{3} = 10.667$	
	$t = \frac{5}{2}, s = \frac{275}{24} = 11.458$ $t = 3, s = \frac{21}{2} = 10.5$ $t = 2$ $s = 10.667$	M1
	Distance travelled in the 3rd second = $\left(\frac{275}{24} - \frac{32}{3}\right) + \left(\frac{275}{24} - \frac{21}{2}\right)$	
	$=\frac{7}{4}$ m	A1
	OR	

Distance travelled in the 3rd second	
$= \int_{2}^{2.5} 5 + 3t - 2t^2 dt + \left \int_{2.5}^{3} 5 + 3t - 2t^2 dt \right $	
$= \left[5t + \frac{3}{2}t^2 - \frac{2}{3}t^3\right]_2^{2.5} + \left[5t + \frac{3}{2}t^2 - \frac{2}{3}t^3\right]_{2.5}^3$	M1
$= \left(5(2.5) + \frac{3}{2}(2.5)^2 - \frac{2}{3}(2.5)^3\right) - \left(5(2) + \frac{3}{2}(2)^2 - \frac{2}{3}(2)^3\right)$	
$+\left(5(3)+\frac{3}{2}(3)^2-\frac{2}{3}(3)^3\right)-\left(5(2.5)+\frac{3}{2}(2.5)^2-\frac{2}{3}(2.5)^3\right)$	M1
$= \left(\frac{275}{24} - \frac{32}{3}\right) + \left(\frac{275}{24} - \frac{21}{2}\right)$	
$=\frac{7}{4}$ m	A1

The sketch shows the graphs of the curve, $y = \frac{1}{x-1} - 4$, the lines 3y = 4x - 12, y = 1, and y = 3. The curve and the line 3y = 4x - 12 intersect at P. The curve cuts the x-axis at $R = \frac{5}{4}$, 0. The x-intercept of the line 3y = 4x - 12 is Q(3, 0).

The region A is bounded by the curve, $y = \frac{1}{x-1} - 4$, the lines y = 1, y = 3, and the y axis. The region B is bounded by the curve, the line 3y = 4x - 12, and the x axis.

Find

(i) the coordinates of P, and [3]

(ii) the area of A and of B. [7]

(ii)	$y = \frac{1}{x - 1} - 4$ $y + 4 = \frac{1}{x - 1}$ $x - 1 = \frac{1}{y + 4}$ $x = \frac{1}{y + 4} + 1$	M1
	$A = \int_{1}^{3} \left(\frac{1}{y+4} + 1\right) dy$ $= \left[\ln(y+4) + y\right]_{1}^{3}$ $= \left(\ln(3+4) + 3\right) - \left(\ln(1+4) + 1\right)$ $= \ln 7 - \ln 5 + 2$ $= 2.3365$ $= 2.34 \text{ units}^{2}$	M1 M1 A1
(ii)	$B = \int_{5/4}^{3/2} \left(\frac{1}{x-1} - 4\right) dx + \frac{1}{2} \times 3 - \frac{3}{2} \times 2$ $= \left[\ln(x-1) - 4x\right]_{5/4}^{3/2} + \frac{3}{2}$	M1
	$ \left \ln \left(\frac{3}{2} - 1 \right) - 4 \left(\frac{3}{2} \right) - \left \ln \left(\frac{3}{4} - 1 \right) - 4 \left(\frac{5}{4} \right) \right + \frac{3}{2} $ $ = 0.30685 + \frac{3}{2} $ $ = 1.81 \text{ units}^{2} $	M1

- The sketch shows the journey of a kayak. The kayak heads due north from a point A for 200 m, to reach B and heads at a bearing of θ for 400 m to reach C. It then makes a 90° turn and travels for 300 m to D, after which it heads due north again for 500 m, to end at E. The total distance of the kayak due north from A is L m.
 - (i) Show that $L = 700 + 400\cos\theta + 300\sin\theta$ [3]
 - (ii) Express L in the form $k + R\cos(\theta \alpha)$ where k and R are positive constants, and $0^{\circ} < \alpha < 90^{\circ}$. [3]
 - (iii) Determine the value of θ if the kayak ends at 1.15 km due north of A. [2]

(iv) If the kayak travelled for 45 minutes, what could be the maximum average speed heading due north, and the corresponding value of θ ? [3]

(iii)	$700 + 500\cos(\theta - 36.870^{\circ}) = 1150$	
	$500\cos(\theta - 36.870^{\circ}) = 450$	M1
	$\cos(\theta - 36.870^{\circ}) = \frac{450}{500}$	
	$\theta - 36.870^{\circ} = 25.842^{\circ}, -25.842^{\circ}$	A1
	$\theta = 62.711^{\circ}, 11.028^{\circ}$	AI
	= 062.7°, 011.0°	
(iv)	Maximum speed occurs for maximum L .	
	Maximum $L = 700 + 500 = 1200$ m.	
	Maximum Speed = $\frac{1200}{0.75}$	M1
	= 1600	At
	=1.6 km/h	
	$\cos(\theta - 36.870^{\circ}) = 1$	
	$(\theta - 36.870^{\circ}) = 0^{\circ}$	
	$\theta = 36.870^{\circ}$	
	= 036.9°	7/

- The equation of a curve is given by $y = (2x-9)\sqrt{x^2+1}$
 - (i) Express $\frac{dv}{dx}$ in the form $\frac{ax}{\sqrt{x^2+v}}$ where a, b and c are real constants.
 - (ii) Find the range of values of x for which y is a decreasing function of x. [3]
 - (iii) Determine the minimum point of the curve. [3]

(i)	$y = (2x-9)\sqrt{x^2+1}$ $\frac{dy}{dx} = \sqrt{x^2+1}(2) + (2x-9)\frac{1}{2}(x^2+1)^{-1/2}(2x)$ $= \sqrt{x^2+1}(2) + \frac{(2x-9)x}{\sqrt{x^2+1}}$	M2
	$=\frac{2x^2+2+2x^2-9x}{\sqrt{x^2+1}}$	M1
	$=\frac{4x^2 - 9x + 2}{\sqrt{x^2 + 1}}$	A1
(ii)	For a decreasing function, $\frac{dy}{dx} < 0$	

[Turnover

The diagram shows two circles that intersect each other at points C and F. The points A and B lie on the circumference of the larger circle. The point E lies on the circumference of the smaller circle such that BCE is a straight line. Line CD is a tangent to the smaller circle at D. The lines CE and CF are of equal length.

(i) Prove that lines *CD* and *FE* are parallel. [3]

(ii) Show that $\angle BAF + 2\angle DCE = 180^{\circ}$.

[4]

(i)	$\angle DCE = \angle CFE$ (Tangent Chord Theorem / Alternate Segment	M
	Theorem.	
	Since $CE = CF$, triangle CFE is an isosceles triangle	
	And $\angle FEC = \angle CFE$ (Base angles of isosceles triangle)	$\boldsymbol{\varphi}$
	So $\angle DCE = \angle FEC$, they are alternate angles,	A1
	Hence lines CD and FE are parallel.	
(ii)	$\angle FCB = \angle CFE + \angle PEC$ (Exterior) Angle = Sum of Interior	M1
	Opposite Anglès) $\angle CFE = \angle FEC$ $= \angle DCE$	M1
	$\angle FCB = \angle DCE + \angle DCE$ $= 2\angle DCE$	M1
	$\angle BAF + \angle FCB = 180^{\circ}$ (Angles in opposite segments)	A1
	Therefore $\angle BAF + 2\angle DCE = 180^{\circ}$	

End of Paper